Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biol Toxicol ; 40(1): 16, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472656

RESUMO

Intervertebral disc degeneration (IVDD) is an aging disease that results in a low quality of life and heavy socioeconomic burden. The mitochondrial unfolded protein response (UPRmt) take part in various aging-related diseases. Our research intents to explore the role and underlying mechanism of UPRmt in IVDD. Nucleus pulposus (NP) cells were exposed to IL-1ß and nicotinamide riboside (NR) served as UPRmt inducer to treat NP cells. Detection of ATP, NAD + and NADH were used to determine the function of mitochondria. MRI, Safranin O-fast green and Immunohistochemical examination were used to determine the degree of IVDD in vivo. In this study, we discovered that UPRmt was increased markedly in the NP cells of human IVDD tissues than in healthy controls. In vitro, UPRmt and mitophagy levels were promoted in NP cells treated with IL-1ß. Upregulation of UPRmt by NR and Atf5 overexpression inhibited NP cell apoptosis and further improved mitophagy. Silencing of Pink1 reversed the protective effects of NR and inhibited mitophagy induced by the UPRmt. In vivo, NR might attenuate the degree of IDD by activating the UPRmt in rats. In summary, the UPRmt was involved in IVDD by regulating Pink1-induced mitophagy. Mitophagy induced by the UPRmt might be a latent treated target for IVDD.


Assuntos
Degeneração do Disco Intervertebral , Mitofagia , Animais , Humanos , Ratos , Fatores Ativadores da Transcrição/metabolismo , Fatores Ativadores da Transcrição/farmacologia , Apoptose , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Qualidade de Vida , Ratos Sprague-Dawley
2.
Int J Biol Sci ; 19(2): 571-592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632468

RESUMO

Mitochondrial unfold protein response (UPRmt) can induce mitophagy to protect cell from unfold protein. However, how UPRmt induces mitophagy to protect cell is not yet clear. Herein, Sesn2 was considered to be a key molecule that communicated UPRmt and mitophagy in the intervertebral disc. Silencing of Sesn2 was able to reverse the protective effects of Nicotinamide riboside (NR) on nucleus pulposus (NP) cells and inhibit mitophagy induced by UPRmt. UPRmt upregulated Sesn2 through Eif2ak4/eIF2α/Atf4, and further induced mitophagy. Sesn2 promoted the translocation of cytosolic Parkin and Sqstm1 to the defective mitochondria respectively, thereby enhancing mitophagy. The translocation of cytosolic Sqstm1 to the defective mitochondria was dependent on Parkin. The two functional domains of Sesn2 were necessary for the interaction of Sesn2 with Parkin and Sqstm1. The cytosolic interaction of Sesn2 between Parkin and Sqstm1 was independent on Pink1 (named as PINK1 in human) but the mitochondrial translocation was dependent on Pink1. Sesn2-/- mice showed a more severe degeneration and NR did not completely alleviate the intervertebral disc degeneration (IVDD) of Sesn2-/- mice. In conclusion, UPRmt could attenuate IVDD by upregulation of Sesn2-induced mitophagy. This study will help to further reveal the mechanism of Sesn2 regulating mitophagy, and open up new ideas for the prevention and treatment of IVDD.


Assuntos
Degeneração do Disco Intervertebral , Mitofagia , Proteína Sequestossoma-1 , Resposta a Proteínas não Dobradas , Animais , Humanos , Camundongos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Mitofagia/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Sequestossoma-1/metabolismo , Sestrinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Oxid Med Cell Longev ; 2022: 9731800, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464773

RESUMO

A healthy microenvironment of the intervertebral disc tissue is characterized by hypoxia owing to its sparse vascular distribution. Oxidative stress plays a pivotal role in the pathological development of intervertebral disc degeneration (IVDD). We found that the expression of prolyl endopeptidase (PREP) increased in degenerative nucleus pulposus (NP) tissues. The purpose of this study was to determine whether PREP is involved in oxidative-stress-induced IVDD. Tertbutyl hydroperoxide can inhibit the expression of PREP by activating the PI3K/AKT signaling pathway at low concentrations in NP cells. Knockdown of PREP protected NP cells from apoptosis induced by oxidative stress, whereas overexpression of PREP exacerbated the apoptosis of NP cells. We also investigated the connection between the PI3K/AKT signaling pathway and PREP and found that the activation of the PI3K/AKT signaling pathway downregulated the expression of PREP by inhibiting p53. As a crucial transcription factor, p53 binds to the PREP promoter region and promotes its transcription. Overexpression of PREP also impairs protein secretion in the extracellular matrix of NP cells. Furthermore, the in vivo knockout of PREP could attenuate puncture-induced IVDD. These findings suggested that the downregulation of PREP might maintain the viability of NP cells and attenuate IVDD under oxidative stress.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Apoptose/fisiologia , Humanos , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/patologia , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Prolil Oligopeptidases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo
4.
Cell Death Dis ; 12(5): 497, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33993186

RESUMO

Bone health requires adequate bone mass, which is maintained by a critical balance between bone resorption and formation. In our study, we identified beraprost as a pivotal regulator of bone formation and resorption. The administration of beraprost promoted differentiation of mouse bone mesenchymal stem cells (M-BMSCs) through the PI3K-AKT pathway. In co-culture, osteoblasts stimulated with beraprost inhibited osteoclastogenesis in a rankl-dependent manner. Bone mass of p53 knockout mice remained stable, regardless of the administration of beraprost, indicating that p53 plays a vital role in the bone mass regulation by beraprost. Mechanistic in vitro studies showed that p53 binds to the promoter region of neuronal precursor cell-expressed developmentally downregulated 4 (Nedd4) to promote its transcription. As a ubiquitinating enzyme, Nedd4 binds to runt-related transcription factor 2 (Runx2), which results in its ubiquitination and subsequent degradation. These data indicate that the p53-Nedd4-Runx2 axis is an effective regulator of bone formation and highlight the potential of beraprost as a therapeutic drug for postmenopausal osteoporosis.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Epoprostenol/análogos & derivados , Proteínas Nucleares/metabolismo , Osteoporose Pós-Menopausa/genética , Inibidores da Agregação Plaquetária/uso terapêutico , Proteínas de Ligação a RNA/metabolismo , Epoprostenol/farmacologia , Epoprostenol/uso terapêutico , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Ubiquitinação
5.
J Cell Physiol ; 236(9): 6691-6705, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33590921

RESUMO

High dose and long-term steroid treatment can alter antioxidative ability and decrease the viability and function of osteoblasts, leading to osteoporosis and osteonecrosis. Ferroptosis, a new type of cell death characterized by excessive lipid peroxidation due to the downregulation of GPX4 and system Xc- , is involved in glucocorticoid-induced osteoporosis. Endothelial cell-secreted exosomes (EC-Exos) are important mediators of cell-to-cell communication and are involved in many physiological and pathological processes. However, the effect of EC-Exos on osteoblasts exposed to glucocorticoids has not been reported. Here, we explored the role of EC-Exos in glucocorticoid-induced osteoporosis. In vivo and in vitro experiments indicated that EC-Exos reversed the glucocorticoid-induced osteogenic inhibition of osteoblasts by inhibiting ferritinophagy-dependent ferroptosis.


Assuntos
Autofagia , Células Endoteliais/metabolismo , Exossomos/metabolismo , Ferroptose , Glucocorticoides/efeitos adversos , Osteoblastos/patologia , Osteoporose/induzido quimicamente , Osteoporose/patologia , Animais , Linhagem Celular , Dexametasona/efeitos adversos , Modelos Animais de Doenças , Endocitose , Exossomos/ultraestrutura , Ferritinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Coativadores de Receptor Nuclear/metabolismo , Osteoblastos/metabolismo , Osteogênese
6.
Aging (Albany NY) ; 13(3): 4647-4662, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526719

RESUMO

Exosomes are major mediators of cell-to-cell communication, and are involved in many physiological and pathological processes. Recently, the roles of exosomes in osteoarthritis (OA) and their therapeutic potential have received increasing attention. Exosomes derived from vascular endothelial cells have been confirmed to participate in the occurrence and development of numerous diseases; however, their effects in OA have not been reported. Here, we demonstrated the roles of exosomes secreted by vascular endothelial cells in the development of OA. Through in vivo and in vitro experiments, we demonstrated that exosomes derived from vascular endothelial cells decreased the ability of chondrocytes to resist oxidative stress by inhibiting autophagy and p21 expression, thereby increasing the cellular ROS content and inducing apoptosis. These findings indicate that exosomes derived from vascular endothelial cells promote the progression of OA, thus, providing new ideas for the diagnosis and treatment of OA.


Assuntos
Apoptose/fisiologia , Condrócitos , Células Endoteliais/metabolismo , Exossomos , Osteoartrite , Estresse Oxidativo/fisiologia , Animais , Células Cultivadas , Condrócitos/patologia , Condrócitos/fisiologia , Exossomos/química , Exossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite/patologia
7.
J Cell Physiol ; 236(4): 2725-2739, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32892384

RESUMO

Ferroptosis is a necrotic form of regulated cell death that was associated with lipid peroxidation and free iron-mediated Fenton reactions. It has been reported that iron deficiency had been implicated in the pathogenesis of intervertebral disc degeneration (IVDD) by activating apoptosis. However, the role of ferroptosis in the process of IVDD has not been illuminated. Here, we demonstrate the involvement of ferroptosis in IVDD pathogenesis. Our in vitro models show the changes in protein levels of ferroptosis marker and enhanced lipid peroxidation level during oxidative stress. Safranin O staining, hematoxylin-eosin staining, and immunohistochemical were used to assess the IVDD after 8 weeks of surgical procedure in vivo. Treatment with ferrostatin-1, deferoxamine, and RSL3 demonstrate the role of ferroptosis in tert-butyl hydroperoxide (TBHP)-treated annulus fibrosus cells (AFCs) and nucleus pulposus cells (NPCs). Ferritinophagy, nuclear receptor coactivator 4 (NCOA4)-mediated ferritin selective autophagy, is originated during the process of ferroptosis in response to TBHP treatment. Knockdown and overexpression NCOA4 further prove TBHP may induce ferroptosis of AFCs and NPCs in an autophagy-dependent way. These findings support a role for oxidative stress-induced ferroptosis in the pathogenesis of IVDD.


Assuntos
Anel Fibroso/metabolismo , Ferroptose , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Estresse Oxidativo , Animais , Anel Fibroso/efeitos dos fármacos , Anel Fibroso/ultraestrutura , Autofagia , Carbolinas/toxicidade , Estudos de Casos e Controles , Células Cultivadas , Desferroxamina/farmacologia , Modelos Animais de Doenças , Ferroptose/efeitos dos fármacos , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/prevenção & controle , Peroxidação de Lipídeos , Masculino , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Sideróforos/farmacologia , Transdução de Sinais , terc-Butil Hidroperóxido/toxicidade
8.
Front Cell Dev Biol ; 8: 515051, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330441

RESUMO

Osteosarcoma (OS) accounts for a large proportion of the types of bone tumors that are newly diagnosed, and is a relatively common bone tumor. However, there are still no effective treatments for this affliction. One interesting avenue is related to the mitochondrial NDUFA4L2 protein, which is encoded by the nuclear gene and is known to be a critical mediator in the regulation of cell survival. Thus, in this study, we aimed to investigate the effect of NDUFA4L2 upon the metastasis and epithelial-mesenchymal transition of OS. We found that NDUFA4L2 protein expression was upregulated in hypoxic conditions. We also used 2-ME and DMOG, which are HIF-1α inhibitors and agonists, respectively, to assess the effects related to decreasing or increasing HIF-1α expression. 2-ME caused a significant decrease of NDUFA4L2 expression and DMOG had the opposite effect. It was obvious that down-regulation of NDUFA4L2 had a direct interaction with the apoptosis of OS cells. Western blotting, wound healing analyses, Transwell invasion assays, and colony formation assays all indicated and supported the conclusion that NDUFA4L2 promoted OS cell migration, invasion, proliferation, and the epithelial-mesenchymal transition. During experiments, we incidentally discovered that autophagy and the ROS inhibitor could be used to facilitate the rescuing of tumor cells whose NDUFA4L2 was knocked down. Our findings will help to further elucidate the dynamics underlying the mechanism of OS cells and have provided a novel therapeutic target for the treatment of OS.

9.
Front Endocrinol (Lausanne) ; 11: 583105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240219

RESUMO

Inhibition of neuropeptide Y1 receptor stimulates osteogenesis in vitro and in vivo. However, the underlying mechanisms involved in these effects remain poorly understood. Here we identify the effects of Y1 receptor deficiency on osteogenic differentiation in human bone marrow stromal cells (BMSCs) by using genetic and pharmacological regulation, and to explore the pathways mediating these effects. In BMSCs, inhibition of Y1 receptor stimulates osteogenesis and upregulates the expression levels of the master transcriptional factor RUNX2. Mechanistically, Y1 receptor deficiency increases the levels of intracellular cAMP, which via protein kinase A (PKA) mediated pathways results in activation of phospho-CREB (p-CREB). We find RUNX2 activation induced by Y1 receptor deficiency is reversed by H-89, a PKA inhibitor. These results indicate Y1 receptor deficiency activates PKA-mediated phosphorylation of CREB, leading to activation of RUNX2 and enhances osteogenic differentiation in BMSCs. In conclusion, these data indicate that Y1 receptor deficiency promotes osteogenic differentiation by RUNX2 stimulation through cAMP/PKA/CREB pathway.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Células-Tronco Mesenquimais/citologia , Osteogênese , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Adulto , Apoptose , Biomarcadores/metabolismo , Proliferação de Células , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , RNA Interferente Pequeno/genética , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Adulto Jovem
10.
Aging (Albany NY) ; 12(18): 18571-18587, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32950969

RESUMO

Many studies have revealed the function of long noncoding RNA (LncRNA) in regulating tumorigenesis of osteosarcoma (OS). As a subgroup of LncRNA, small nucleolar RNA host genes (SNHGs) have emerged as potentially important in OS. According to our recent findings, small nucleolar RNA host gene 22 (SNHG22) plays an important role in inhibiting the growth and metastasis of OS. However, the underlying mechanism of SNHG22 in regulating OS progression remains unknown. In this study, we confirmed that SNHG22 was downregulated in OS, and the overexpression of SNHG22 significantly inhibited OS progression in vivo and in vitro. Meanwhile, overexpression of SNHG22 also inhibited the migration and proliferation of human umbilical vein endothelial cells (HUVECs) and prevented the epithelial-to-mesenchymal transition (EMT) in OS. Furthermore, the interaction between miR-4492 and SNHG22 we previously predicted was validated by RNA pull-down assays and RNA immunoprecipitation assays. Dual-luciferase reporter assays showed that SNHG22 could directly interact with miR-4492 and upregulate the expression of NK-κB inhibitor-interacting Ras-like 2 (NKIRAS2) by its competing endogenous RNA (ceRNA) activity on miR-4492. In conclusion, our study has clarified the function of SNHG22 in OS progression and suggests a novel therapeutic target for OS.

11.
Exp Mol Med ; 51(11): 1-16, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740659

RESUMO

The main pathological mechanism of intervertebral disc degeneration (IVDD) is the programmed apoptosis of nucleus pulposus (NP) cells. Oxidative stress is a significant cause of IVDD. Whether mitophagy is induced by strong oxidative stress in IVDD remains to be determined. This study aimed to investigate the relationship between oxidative stress and mitophagy and to better understand the mechanism of IVDD in vivo and in vitro. To this end, we obtained primary NP cells from the human NP and subsequently exposed them to TBHP. We observed that oxidative stress induced mitophagy to cause apoptosis in NP cells, and we suppressed mitophagy and found that NP cells were protected against apoptosis. Interestingly, TBHP resulted in mitophagy through the inhibition of the HIF-1α/NDUFA4L2 pathway. Therefore, the upregulation of mitochondrial NDUFA4L2 restricted mitophagy induced by oxidative stress. Furthermore, the expression levels of HIF-1α and NDUFA4L2 were decreased in human IVDD. In conclusion, these results demonstrated that the upregulation of NDUFA4L2 ameliorated the apoptosis of NP cells by repressing excessive mitophagy, which ultimately alleviated IVDD. These findings show for the first time that NDUFA4L2 and mitophagy may be potential therapeutic targets for IVDD.


Assuntos
Apoptose/fisiologia , Sobrevivência Celular/fisiologia , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Núcleo Pulposo/citologia , Núcleo Pulposo/metabolismo , Estresse Oxidativo/fisiologia , Animais , Apoptose/genética , Western Blotting , Sobrevivência Celular/genética , Imunoprecipitação da Cromatina , Complexo I de Transporte de Elétrons/genética , Citometria de Fluxo , Masculino , Potencial da Membrana Mitocondrial , Microscopia Eletrônica de Transmissão , Mitofagia/genética , Estresse Oxidativo/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley
12.
Artigo em Inglês | MEDLINE | ID: mdl-31249554

RESUMO

Chordin-like 1 (CHRDL1) is a secreted glycoprotein with repeated cysteine-rich domains, which can bind to BMPs family ligands. Although it has been reported to play important roles in several systems, the exact roles of CHRDL1 on human bone mesenchymal stem cells (hBMSCs) osteogenesis remain to be explored. The present study aimed to investigate the roles of CHRDL1 on the osteogenic differentiation of hBMSCs and the underlying molecular mechanisms. We found that CHRDL1 was upregulated during hBMSCs osteogenesis, and rhBMP-4 administration could enhance CHRDL1 mRNA expression in a dose and time dependent manner. Knockdown of CHRDL1 did not affect hBMSCs proliferation, but inhibited the BMP-4-dependent osteogenic differentiation, showing decreased mRNA expression levels of osteogenic markers and reduced mineralization. On the contrary, overexpression of CHRDL1 enhanced BMP-4 induced osteogenic differentiation of hBMSCs. Moreover, in vivo experiments by transplanting CHRDL1 gene modified hBMSCs into nude mice defective femur models displayed higher new bone formation in CHRDL1 overexpression groups, but lower new bone formation in CHRDL1 knockdown groups, compared with control groups. In consistent with the bone formation rate, there were increased CHRDL1 protein expression in new bone formation regions of defective femur in CHRDL1 overexpression groups, while reduced CHRDL1 protein expression in CHRDL1 knockdown groups compared with control groups. These indicate that CHRDL1 can promote osteoblast differentiation in vivo. Furthermore, the mechanisms study showed that CHRDL1 improved BMP-4 induced phosphorylation of SMAD1/5/9 during osteogenic differentiation of hBMSCs. Besides, promotion of osteogenic differentiation and the activation of SMAD phosphorylation by CHRDL1 can be blocked by BMP receptor type I inhibitor LDN-193189. In conclusion, our results suggested that CHRDL1 can promote hBMSCs osteogenic differentiation through enhancing the activation of BMP-4-SMAD1/5/9 pathway.

13.
Int J Biol Macromol ; 136: 1007-1017, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31238070

RESUMO

Apoptosis of annulus fibrosus (AF) is observed widely in intervertebral disc degeneration (IVDD) which causes weaken of tension in the annulus of intervertebral disc. Previous studies reported that apoptosis of AF is induced mainly by oxidative stress. SIRT2 is a major regulator of mitochondria to mediate ROS production. However, the mechanism of SIRT2 in IVDD remains unclear. Here, the expression of SIRT2 was detected in AF cells exposed to tert-Butyl hydroperoxide (TBHP) by western blotting. Autophagic flux and apoptosis were assessed by western blotting, flow cytometry and immunofluorescence respectively. Safranin O staining, HE, and immunohistochemical were used to assess the IVDD after 3, 6 and 9 months of surgical procedure in vivo. The expression of SIRT2 was decreased in AF cells treated with TBHP. Repression of mitophagy alleviated the apoptosis of AF cells caused by TBHP. Overexpression of PGC-1α prevented AF cells from apoptosis and mitophagy after applying Lenti-PGC-1α to transfect AF cells. These protections of PGC-1α were reduced by FCCP. Furthermore, the expression of PGC-1α was reduced and the level of mitophagy was increased in IVDD models. In conclusion, this study indicates that the regulation of PGC-1α expression provide a new theoretical basis for the mechanism of IVDD.


Assuntos
Anel Fibroso/citologia , Apoptose , Mitofagia , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 2/metabolismo , Animais , Inativação Gênica , Ratos , Ratos Sprague-Dawley , Sirtuína 2/deficiência , Sirtuína 2/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-32047474

RESUMO

Long-term and high dose glucocorticoid treatment can cause decreased viability and function of osteoblasts, which leads to osteoporosis and osteonecrosis. In this study, we investigated the role and mechanism of action of HIF-1α in glucocorticoid-induced osteogenic inhibition in MC3T3-E1 cells. Our results showed that HIF-1α protein expression was reduced when MC3T3-E1 cells were exposed to dexamethasone (Dex) at varying concentrations ranging from 10-9 to 10-6 M. PDK1 expression was also decreased in MC3T3-E1 cells after dexamethasone treatment. MC3T3-E1 cells when treated with the glucocorticoid receptor antagonist RU486 along with dexamethasone showed enhanced HIF-1α expression. In addition, upregulated expression of HIF-1α was capable of promoting the osteogenic ability of MC3T3-E1 cells and PDK1 expression. However, the HIF-1α antagonist 2-methoxyestradiol (2-ME) had a reverse effect in MC3T3-E1 cells exposed to dexamethasone. Furthermore, the PDK1 antagonist dichloroacetate could repress the osteogenic ability of MC3T3-E1 cells, although HIF-1α was upregulated when transduced with adenovirus-HIF-1α construct. The PDK1 agonist PS48 was able to promote the osteogenic ability of MC3T3-E1 cells treated with dexamethasone. Importantly, the protein levels of p-AKT and p-mTOR were increased in MC3T3-E1 cells treated with dexamethasone after PS48 treatment. in vivo, the PDK1 agonist PS48 could maintain the bone mass of mice treated with dexamethasone. This study provides a new understanding of the mechanism of glucocorticoid-induced osteoporosis.

15.
Nan Fang Yi Ke Da Xue Xue Bao ; 37(10): 1386-1390, 2017 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-29070471

RESUMO

OBJECTIVE: To investigate the role of Snitrosylation of protein disulphide isomerasec in methamphetamine (METH)-induced expression of alpha synuclein (αSN) in mouse hippocampus and striatum neurons. METHODS: Forty C57BL/6 mice were randomized equally into saline control group, METH group, L-NNA (a NOS inhibitor) group and L-NNA plus METH group. All the agents were injected intraperitoneally at an interval of 12 h, and a total of 8 injections were administered; in L-NNA plus METH group, METH was injected 30 min after LNNA in each treatment. Western Blotting was used to detect the expression of nitric oxide synthase (NOS), αSN, PDI and Snitrosylation of protein disulphide isomerase (PDI-SNO) in the hippocampus and striatum of the mice, and nitric oxide (NO) levels were determined using a NO assay kit. RESULTS: In METH group, the levels of NOS, PDISNO, αSN and NO all increased significantly compared with those in the control group (P<0.05). Combined treatment with L-NNA and METH, compared with METH alone, resulted in significantly lowered expression of NOS, NO, PDI-SNO and αSN in the hippocampus and striatum of the mice (all P<0.05). No significant differences were found in NOS, NO, PDI-SNO or αSN expressions among METH+L-NNA, L-NNA and control groups (P>0.05). CONCLUSION: METH induces the activation of NOS and increases NO level to cause the occurrence of PDI-SNO, leading subsequently to increased expression of αSN in mouse striatum and hippocampus. L-NNA, the inhibitor of NOS, can partly relieve nervous system toxicity induced by METH.


Assuntos
Encéfalo/metabolismo , Metanfetamina/farmacologia , Isomerases de Dissulfetos de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Nitroarginina/farmacologia , Processamento de Proteína Pós-Traducional , Distribuição Aleatória
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 23(5): 1258-64, 2015 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-26524019

RESUMO

OBJECTIVE: To explore the correlation between MBL ExonI 54 and NFκB1-94ins/del ATTG polymorphism and fever during neutropenia in patients with acute leukaemia (AL) (except M3) after first chemotherapy in Chinese Han population. METHODS: Blood samples obtained from 76 fever patients with AL during neutropenia episodes were detected to analyse single nucleotide polymorphism (SNP) in the MBL ExonI 54 and NFκB1-94ins/del ATTG gene, and analyse the correlation between above-mentioned 2 polymorphisms and fever during neutropenia of AL patients after chemotherapy. RESULTS: In 76 patients, no correlation were found between MBL ExonI 54 and NFκB1-94ins/del ATTG polymorphism and fever during neutropenia in patients with acute leukaemia after chemotherapy (P > 0.05). No significant relation were found in sex, age, underlying disease, disease status or degrees of neutropenia in febrile neutropenia between MBL ExonI 54 and NFκB1-94ins/del ATTG polymorphism (P > 0.05). However, patients with MBL ExonI 54 mutation presented longer febrile duration with a median of 5 days compared to 3 days of patients with wildtype MBL ExonI 54 genotype (P < 0.05). CONCLUSIONS: There is no clear correlation between MBL ExonI 54 and NFκB1-94ins/del ATTG polymorphism and fever during neutropenia in patients with acute leukaemia after chemotherapy. However, the patients with MBL ExonI 54 mutation have been observed to present a longer febrile duration.


Assuntos
Mutação INDEL , Leucemia/genética , Lectina de Ligação a Manose/genética , Subunidade p50 de NF-kappa B/genética , Neutropenia , Doença Aguda , Éxons , Febre , Genótipo , Humanos , Leucemia/tratamento farmacológico , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...